
Citation: Callea, C.; Ceddia, M.;

Piattelli, A.; Specchiulli, A.;

Trentadue, B. Finite Element Analysis

(FEA) for a Different Type of Cono-in

Dental Implant. Appl. Sci. 2023, 13,

5313. https://doi.org/10.3390/

app13095313

Academic Editor: Oleh Andrukhov

Received: 30 March 2023

Revised: 16 April 2023

Accepted: 20 April 2023

Published: 24 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Finite Element Analysis (FEA) for a Different Type of Cono-in
Dental Implant
Caterina Callea 1, Mario Ceddia 1, Adriano Piattelli 2,3,4,*, Alessandro Specchiulli 5

and Bartolomeo Trentadue 1,6,7,*

1 Department of Mechanics, Mathematics and Management, Politecnico di Bari, 70125 Bari, Italy;
c.callea1@studenti.poliba.it (C.C.)

2 School of Dentistry, Saint Camillus International University for Health and Medical Sciences (Unicamillus),
00131 Rome, Italy

3 Facultad de Medicina, UCAM, Universidad Catolica San Antonio de Murcia, 30107 Murcia, Spain
4 Dental School, University of Belgrade, 11000 Beograd, Serbia
5 Department of Medical, Dental and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 31,

66100 Chieti, Italy
6 Department of Engineering, Illinois Institute of Technology, 10 W 35th St., Chicago, IL 60616, USA
7 Department of Engineering, Northern University of Illinois, Northeast Illinois, 1425 W Lincoln Hwy,

DeKalb, IL 60115, USA
* Correspondence: apiattelli51@gmail.com (A.P.); bartolomeo.trentadue@poliba.it (B.T.)

Abstract: The aim of biomechanics applied to implantology is to determine the deformative and
tensional states by solving the equilibrium equations within the mandibular bone and the osseointe-
grated implant to ensure its stability and improve the success rate. The finite element method is a
powerful numerical technique that uses computing power to derive approximate solutions for the
analysis of components with very complex geometry, loads, materials, and especially the biome-
chanical problems analysis, which is challenging to find in vivo or in vitro. This study performs a
complete FEA survey on 3 implants Cono-in with 3 different diameters 3.4 mm, 4.5 mm, and 5.2 mm
with abutments inclined to 15◦ and evaluates the tensions that are generated in the system as a
result of the application of chewing loads. In this study, the extent of the stresses developed in the
peri-crestal zone of the implants with the variation of the occlusal overstress acting on them was also
evaluated. Autodesk Inventor Nastran Software was used to perform this type of localized finite
element analysis; With this type of analysis, it was possible to analyze the peri-crestal area of the
implant more precisely through a more accurate reconstruction of the mesh element, which allowed
us to solve the FEA solution mathematically. The results showed how the application of the inclined
load with respect to the vertical load on a larger diameter system leads to an increase in stress.

Keywords: dental implant; finite element analysis; mechanical stress; peri-crestal stress

1. Introduction

Osseointegrated implants have been successfully used to restore the functionality of
fully or partially edentulous patients. Despite the high success rate of these implants, the
literature [1,2] notes high failure rates. The most common failures are the lack of stability
between the implant and the bone and the breakage in the areas of abutment–implant
connection due to, for example, an incorrect choice of the diameter of the implant or an
incorrect consideration of the chewing loads. In fact, studies [1] show how an inclination
of the load increases the stress on the system. Although these ruptures do not result in
implant loss, they pose a problem for both patients and physicians and incur additional
costs. Therefore, varieties of geometries and connections for implants and abutments have
been developed. Studies in the literature show how the internal connection with respect
to the external one (hexagonal) provides a reduction in stress at the interface of the bone
implant [1]. In addition, clinical failures have improved. The use of the FEA method
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increasingly used in recent years [2] to study the stresses in many dental applications
allows us to understand the mechanical behavior of the implant without having to perform
destructive or in vivo tests. FEA basically stands for a numerical model of stress and strain
analysis of an assigned geometry [3,4]. FEA results showed that when combined with
strain gauge measurements in vivo, they correspond to clinical results [4]. The aim of this
study is to evaluate the simultaneous influence of load diameter and inclination on an
implant system with an internal conometric connection, on the distribution of stresses in
the abutment, and on the implant, paying more attention to the upper area of the implant
where the highest tensions occur.

This implant was chosen because it has a self-locking Cone Morse connection with
a 2 degrees angulation, 1 degree per side. On the market, there are very few implants
that have a self-locking connection. Most commercial implants do not have a self-locking
Cone Morse connection but a conical 5◦, 11◦, or even 18◦ implant–abutment connection
angle [5–8].

2. Materials and Methods

The finite element method allowed the analysis of the stresses that the prosthetic com-
ponents exchanged intrinsically and how the latter were discharged onto the bone [9–13].
In this work, we will study the conometric implants (3P ImplaFavourite, Scalenghe, Turin,
Italy) with 3 different diameters (3.4 mm, 4.5 mm, and 5.2 mm) and abutments inclined
at 15◦.

Figure 1 below showed the main aspects of the three different geometries under
analysis. Before carrying out the real finite element analysis, it was necessary to simulate
the abutment–implant contact [14] through the constraint functions present within the
Software Inventor 2021, Autodesk (San Francisco, CA, USA) (Figures 2–4).
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Figure 4. Another constraint imposed was relative to rotational locking, which ensured that the two
components did not have relative rotation.

Regarding an internal connection, due to friction between the inclined planes of the
implant and the abutment, the lateral occlusal force is concentrated on the implant wall
through the abutment–implant connection zone. Therefore, the loosening of the screws is
less frequent in internal connections, and the absolute stability between the implant and
the abutment with the absolute absence of micromovements guarantees a good bacterial
seal and optimal clinical well being [15–22].

The Cono-in implants were made of grade 4 titanium, with small full-section abut-
ments made of ti6al4v titanium alloy, known for its improved mechanical strength (the
abutments were, in fact, the component most at risk of breaking the resistance). The next
step was, therefore, to assign the material to the two components before carrying out the
stress analysis study [14]. Therefore, in order to model the bone–implant contact, the
interlocking constraint was used, the movements in the three directions, x, y, and z, were
constrained and applied to the upper surface of the e-implants shown in Figure 5 since the
correct stability occurs if there are not micro-chromosomes between the implant and bone.
The occlusal surface of the dental implant was subjected to a combined loading condition
in the mesiodistal, buccal-lingual, and apical directions. Three different simulations were
performed to vary the occlusal force and, consequently, the angle of the resulting relative
to the occlusal plane; In this way, the variation of the maximum stress of Von Mises was
highlighted by varying load and inclination. A 0.5 mm mesh was used [23–31].

In this study, we will also evaluate the extent of the stresses developed in the peri-
crestal zone of the implants with the variation of the occlusal overstress acting on them. In
particular, the responses of the first cone morse implant with inclination of 0◦ and the last
of 15◦ will be compared in order to highlight how the inclination of the stump can affect
the response of the implant to the action of occlusal forces. Autodesk Inventor Nastran
software was used to perform this type of localized finite element analysis.

Specifically, six finite element simulations were carried out in the periapical zone of
the two implants: three for the dental implant conometric axis of the abutment with zero
inclination and three for the dental implant conometric axis of the abutment with inclination
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of 15◦; the simulations differed according to the occlusal load considered, 300 N, 200 N,
and 100 N. The results of the analyses were shown in the figures below (Figures 11–18).
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Figure 5. The reference system used.

3. Results

The force values have been assumed from the studies carried out on the masticatory
complex. In particular, the use of the first two implants as replacement of incisors or lateral
incisors and the third type of implant as replacement of a premolar or molar has been
hypothesized. Subsequently, the results of the analysis were shown with the elements
performed via the Inventor Professional Calculation Software (Autodesk) using overstresses
on the respective 3 implants, as were shown the values of Von Mises stress for a mesh
element size of 0.05 mm in Figures 6–9. Figure 10 below summarizes the movements
along x, y, and z for the three different types of implants evaluated (considering the
maximum efforts). Finally, the results of the analysis carried out in the three different
plants were summarized, for greater clarity, in tabular form (Table 1) and graphic form
(Schemes 1 and 2).
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Maximum Von Mises Stress (MPa)

Cono-In 3.4; abutment 0◦ Cono-In 4.5; abutment 0◦ Cono-In 5.2; abutment 15◦

Mesh
0.1 mm

Mesh
0.08 mm

Mesh
0.05 mm

Mesh
0.1 mm

Mesh
0.08 mm

Mesh
0.05 mm

Mesh
0.1 mm

Mesh
0.08 mm

Mesh
0.05 mm

Magnitude
Strength (N)

502.8

249.1 290.7 260.7 154.4 161 194

394 366.7 387.8

402.9 335.9 296.1 239.1

172.5

293 338.5 239.1122.5

118.4 23.7 265.2 241.6 143.4 145.9 179.9

41.7 202.8 229.3 206.5 131.6 162.1 158.1
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The results of this study localized in the peri-crestal zone of the implants are shown in
the figures below (From Figures 11–18).
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Figure 12. Strain analysis dental implant Cono-in 3.4 mm 0◦ following an occlusal force of 100 N.
Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 80] MPa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 18 to 25 MPa (Autodesk Inventor Nastran
2021).
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Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 150] MPa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 36 to 50 MPa (Autodesk Inventor Nastran
2021.
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Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 80] MPa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 50 to 70 MPa (Autodesk Inventor Nastran
2021).
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Figure 16. Strain analysis dental implant Cono-in 5.2 mm 15◦ following an occlusal force of 100 N.
Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 50] Mpa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 7 to 46 MPa (Autodesk Inventor Nastran
2021).
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Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 100] MPa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 14 to 103 MPa (Autodesk Inventor Nastran
2021).
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Figure 18. Strain analysis dental implant Cono-in 5.2 mm 15◦ following an occlusal force of 300 N.
Stress distribution view with and without mesh display. The colorimetric variation range has been set
in the range of [0, 100] MPa for a better representation of the stress distribution. In this first analysis,
the stress in the peri-crestal area of the implant varies from 19 to 150 MPa (Autodesk Inventor Nastran
2021).
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4. Discussion

The geometry of the implants is one of the fundamental parameters to be considered in
the clinical picture [32]. In this regard, finite element analysis is a powerful means to study
the stresses and possible problems that could lead to implant failure. Some studies have
focused on the influence of the length [1] of the implant in relation to the stress distribution;
it has been reported that the best range of lengths, which corresponded approximately
to the true length of the roots of the teeth, was suggested to be in the range of 8 mm and
13 mm [9,33–35]. This criterion was met by the implant object of the present investigation,
which has a wheelbase of about 0.8 mm. Similarly, the studies concerning the geometry of
the helix showed a close correlation between the same stress and the distribution of stress
around the implant. A decrease in the thread pitch of the implant could positively influence
the stability of the implant. One of the technical measures concerning the implant geometry,
also used on the implants under investigation, was the addition of helixes or micro-helixes
up to the crestal module that provided a potentially positive contribution to the implant–
bone adhesion as well as to the conservation of marginal bone [33,35,36]. In general, as
previously treated, bone is remodeled constantly to adapt to external stimuli due to the
surrounding environment, a phenomenon known as bone homeostasis. Therefore, the
implants were designed to maximize the delivery of optimal favorable voltages, minimizing
the amount of extreme adverse stress at the implant-bone interface [37,38]. Hence, these
implants have threads that allowed better stability and a greater surface of implant–bone
contact. It is, therefore, evident that a pitch of 0.8 mm has a higher resistance to vertical load.
In this study, conical implants were used that produce compressive forces (positive for bone
remodeling). On the contrary, in cylindrical implants, cutting forces were more developed
due to implant damage [39]. In addition, the double thread was more useful for faster
insertion than the single thread. Studies have shown that implants with multiple threads
(resulting in a lower height) have a higher percentage of the bone–implant interface [40].
In addition, a greater depth of the helix can be an advantage in areas of softer bone and
when there was greater occlusal strength due to increased functional surface in contact
with bone [35]. In contrast, the decrease in the depth of the fillet allows for easier insertion
into the denser bone without the need for tapping [41]. The results obtained regarding
this localized study of the peri-crestal zone were extremely interesting [42,43]. Firstly, both
implants generated significantly lower stress distributions in the peri-crestal area than
the yield stress of the material constituting the abutment (the maximum stress developed
in this area was 100 MPa in the face of a yield stress of 860 Mpa Ti6Al4V). This result
makes it possible to affirm that both implants will be able to withstand occlusal forces for a
considerable life span, which is an excellent result that guarantees the clinical success of
the treatment.

There were substantial differences concerning the uniformity of stress distribution. The
dental implant with zero inclination of the abutment had a very uniform and axisymmetric
stress distribution; the stress distribution was, for the same occlusal forces considered in
all 3 cases (100 N, 200 N, and 300 N), much lower than the implant distributions with an
inclination of 15◦of the abutment. In addition, stresses were distributed gradually over a
finite and substantially defined range (for an occlusal force of 100 N stress→ range in MPa
(18, 25); for an occlusal force of 200 N→ stress range in MPa (36, 50); for an occlusal force
of 300 N→ stress range in MPa (50, 70)).

On the other hand, the 15-prong implant had a stress concentration in the peri-crestal
area of the implant, meaning localized stress. This resulted in a distribution, albeit small,
less gradual and, therefore, a consequently wider range of values:

• For an occlusal force of 100 N stress→ range in MPa (7, 46);
• For an occlusal force of 200 N→ stress range in MPa (15, 103);
• For an occlusal force of 300 N→ stress range in MPa (20, 150).

In the latest configuration, the abutment was more stressed than the first threads of
the implant.
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Obviously, a situation that presented continuity and graduality of the stress distribu-
tion was always preferable as it turned out to be a necessary prerequisite for not having
complications during the fatigue life of the component. Therefore, there was an apparent
correlation between the inclination of the stump and the development of stress in the peri-
crestal implant area. In particular, it seemed that the two implants under study were in a
linear relationship with a multiplicative factor 2, in the peri-crestal zone of the installations).
These results do not account for the effect that the oral environment may have. A further
study could implement this effect to obtain more accurate results.

5. Conclusions

All the implants and abutments under analysis have been verified, and the results
showed that, even with very high loads acting on the implants, the maximum stress,
evaluated with the Von Mises criterion, was always lower than the yield strength of the
implant and the abutment, respectively, 483 MPa and 860 MPa.

In conclusion, the peri-crestal study of the first and third systems (Cono-in 3.4 and
Cono-in 5.2) confirmed the following:

• The 3.4 mm Cono-in system was more stressed by large occlusal forces in the peri-
crestal area with a much lower stress distribution;

• The 5.2 mm implant resisted higher occlusal loads than the first one thanks to its more
consistent geometry; but, in the peri-crestal area, it had values and distributions of
the most important stresses due to the inclination of the abutment, which needs more
attention;

• An inclined load leads to an increase in stress in the abutment–implant connection
area.

Such a study can, therefore, help the clinician to accurately assess the size of the
implant and take into account any parafunctional loads such as bruxism, avoiding failures
that would lead to increased costs on the part of the patient and the clinician. The next
investigation should attempt to correlate the results with clinical results. Currently, there is
still no correspondence between FEA studies and in vivo studies. In doing so, it improves
the validity of the models. In addition, it is necessary to simulate the consequences of
saliva, infection, and fatigue failure under repetitive, realistic, and cyclical load conditions.
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